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We assume that the energy spectrum of a chaotic system undergoing symmetry-breaking transitions can be
represented as a superposition of independent level sequences, one increasing at the expense of the others. The
relation between the fractional level densities of the sequences and the symmetry-breaking interaction is
deduced by comparing the asymptotic expression of the level-number variance with the corresponding expres-
sion obtained using the perturbation theory. This relation is supported by a comparison with previous numerical
calculations. The predictions of the model for the nearest-neighbor-spacing distribution and the spectral rigidity
are in agreement with the results of an acoustic resonance experiment.
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I. INTRODUCTION

Random matrix theory provides a framework for describ-
ing the statistical properties of spectra for quantum systems
whose classical counterpart is chaotic[1,2]. It models the
Hamiltonian of a chaotic system by an ensemble of
N-dimensional random matrices, subject to some general
symmetry constraints. Time-reversal-invariant quantum sys-
tem having integral spins are represented by a Gaussian or-
thogonal ensemble(GOE) of random matrices while those
having half-integral spins are modeled by a Gaussian sym-
plectic ensemble(GSE). Chaotic systems without time-
reversal invariance are represented by the Gaussian unitary
ensemble(GUE). Symmetries associated with quantum num-
bers always involve a structure of the Hamiltonian matrices,
which is reflected in the composition of the energy spectra.
When the system has such a symmetry withM eigenvalues,
the Hamiltonian of the system is block diagonal. Each block
represents an eigenvalue(or a set of eigenvalues) of the sym-
metry operator, and may be considered as a member of one
of the above-mentioned canonical ensembles. The energy
spectrum is given by a superpositionM of independent se-
quences, each one representing one of the Hamiltonian
blocks. Modifications accounting for the symmetry breaking
are realized by introducing coupling blocks belonging to dif-
ferent quantum numbers. The first attempt in this direction is
due to Rosenzweig and Porter[3]. Their model was ex-
panded by Frenchet al. [4], who applied the perturbation
theory to study transitions between different classes of sym-
metry. Guhr and Weidenmüller[5] applied this model to
study mixing of states with isospinT=0, 1 in nuclei. Leitner
et al. [6,7] obtained closed-form expressions for the nearest-
neighbor-spacing(NNS) distributions within its framework
by applying the perturbation theory. Their results have been
applied to experimental spectra for two coupled microwave
billiards [8] by Barbosa and Harney[9]. One, however, may
have difficulties with this model when the number of the
symmetry eigenvaluesM is more than two. More informa-
tion has to be put in the theory since the influence of sym-
metry breaking on different eigenfunctions may be different.
Moreover, one may have difficulties in applying Leitner’s
perturbation formulas for symmetries with largeM, which
are valid for energy intervals of length considerably exceed-

ing M. Numerical investigations for breaking such symme-
tries require diagonalizing larger matrices, which are built of
sizable blocks, in order to achieve a statistical significance
comparable to that of modern experiments. Additionally, the
number of allowable symmetry eigenvalues is not always
fixed, as in the case of multiple collective excitation of nu-
clei. For example, the maximum number of phonons realized
in the nuclear vibrational model is subject to dispute[11].

In the present paper, we consider a simple model for
gradual symmetry breaking in a chaotic system. This model
represents the energy spectrum as independent level se-
quences not only in the absence of the symmetry breaking
perturbation, but also during the whole transition until the
symmetry is totally violated. During the crossover from full
to no symmetry, one of the sequences grows at the expense
of the other sequences until it totally exhausts the spectrum.
The proposed model leads to approximate expressions for
the nearest-neighbor and next-to-nearest-neighbor spacing
distributions [10] which depend on a single parameter,
namely the mean level density of the sequences. These have
been successfully applied to the analysis of the spectra of
coupled microwave resonators[8], which are not described
by a Hamiltonian divided into a symmetry-breaking term and
a perturbation. The model provides a satisfactory description
for level statistics of low-lying 2+ states of even-even nuclei
[12] without explicit knowledge of their symmetry proper-
ties. This paper presents additional arguments in favor of that
model. Section II shows that the energy spectrum obtained in
the Rosenzweig-Porter model[3] may approximately be rep-
resented as a composite spectrum of level sequences. Section
III uses the asymptotic values for the expressions of level-
number variance obtained by Frenchet al. [4] for systems
undergoing a symmetry breaking to find a relation between
the fractional level density of the sequences and the
symmetry-breaking perturbation strength. This relation is
tested in Sec. IV by a comparison of the NNS distributions of
the composite spectrum with the ones obtained by Leitner[6]
through a diagonalization of the Rosenzweig-Porter Hamil-
tonian. Section V shows that the model under investigation is
consistent with the results of the acoustic-resonance experi-
ment by Andersenet al. [13]. The conclusion and summary
of this work are given in Sec. VI.
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II. A MODEL FOR SYMMETRY BREAKING

The purpose of this section is to show that the level spec-
trum of a chaotic system with a conserved symmetry can still
be expressed as a superposition of independent sequences,
even when the symmetry is partially violated. For concrete-
ness, we restrict consideration in this section to the transition
from two independent GOE spectra to a single GOE spec-
trum. The extension to other universality classes is trivial.
We assume that the system is described by the Rosenzweig-
Porter model[3]. The Hamiltonian of the perturbed system
can be written as a sum of a block-diagonal matrix, repre-
senting the case when the symmetry is conserved, and a per-
turbation responsible for symmetry breaking. When the sym-
metry has two eigenvalues of equal degeneracy, the
Hamiltonian takes the form

H = SH1 0

0 H2
D + «S 0 V

V† 0
D , s1d

whereH1 andH2 are GOE matrices with elements having a
variancev2s1+di jd, andV is a random matrix with elements
having the same variance so that«=1 causesH as a whole to
be a GOE matrix.

Because the system is chaotic, the eigenvalues of the sym-
metry are expected to spread out over phase space. Thus, all
of the matrix elements that couple different eigenstates are
statistically equivalent. Keeping this in mind, we consider a
simple version of the Rosenzweig-Porter model in which
H1=H2, hoping that the obtained results approximately apply
for independent diagonal Hamiltonian blocks. We start with
the case in which the symmetry is fully conserveds«=0d.
The total wave function is given by a product of an eigen-
function of the symmetry operator and an eigenfunction that
depends on all coordinates except the one that represents the
symmetry. For concreteness, we shall refer to these as the
spatial coordinates, although other variables may be in-
volved. In the case under consideration, the symmetry opera-
tor Shas two eigenvalues, says1 ands2. It can be represented
by the 232 matrix, diagss1,s2d, with corresponding eigen-
vectorsa1 anda2. Wave functions of a chaotic system have
nearly a uniform phase-space distribution. Almost nothing
happens to the spatial components of the wave functions
upon introducing the symmetry-breaking perturbation. In this
case, the effect of symmetry breaking can approximately be
taken into account by simply introducing a new symmetry
operatorSd that contains additional nondiagonal elements,
each equal tod, which is proportional to«. The wave func-
tion of each perturbed state is given by a spatial wave func-
tion that does not depend on the symmetry breaking, multi-
plied by one of the two eigenfunctionsb1,2 of Sd having
eigenvaluesl1,2=

1
2fs1+s2±Îss1−s2d2+4d2g. Thus, while the

perturbed Hamiltonian(1) has nonvanishing off-diagonal
blocks in the representation in which the symmetry wave
functions area1,2, it will recover the block-diagonal form
when using the representation that involves the eigenvectors
b1,2 of Sd,

H = SH18 0

0 H28
D

d

. s2d

Here, the diagonal blocksH1,28 are nearly equal to the diag-
onal blocksH1,2 of the unperturbed Hamiltonian, except for a
shift in the diagonal matrix elements by almost the same
amount in each block, but in opposite directions. This shift
will produce a corresponding shift in the eigenvalues corre-
sponding to each block. If the level density of each sequence
in the absence of perturbation isrsEd, then after perturbation,
the level densities of the sequences becomersE±a«d, re-
spectively, wherea is a constant. Now, ifrsEd is approxi-
mated by an exponential function as in many applications,
then the fractional density of the sequence that decreases by
the influence of perturbation, say the sequence labeled by 1,
can be approximately related to the perturbation parameter«
by

f1 = f1,0e
−A«, s3d

wheref1,0 is the initial fractional density andA is a constant.
The spectrum of the chaotic system under consideration

can approximately be represented by a superposition of two
independent sequences all the way through the symmetry-
breaking transition, even in the case whenH1ÞH2 in Eq. (1).
Analysis of the spacing distribution of coupled resonators of
unequal size has shown this[10]. The purpose of the follow-
ing sections is to provide further support for this approxima-
tion.

We note that the proposed representation of symmetry
breaking is meant for chaotic systems. It does not apply, for
example, to the experiment by Ellegaardet al. [14], where a
gradual breaking of a point-group symmetry in monocrystal-
line quartz blocks is achieved by cutting small pieces at one
of the angles. The properties of quartz allowed these authors
to consider the pure sequences as pseudointegrable systems
(see, e.g., Refs.[15–17]). A previous analysis[18] of this
experiment has shown that the symmetry breaking can be
explained by introducing a new GOE level sequence in ad-
dition to the original pseudointegrable ones, and allowing it
to grow at their expense.

III. CALCULATION OF LEVEL-NUMBER VARIANCE

The level number variance for a spectrum composed of a
superposition ofM independent sequences is given by[19]

Sb
2sr, f1,…, fMd = o

m=1

M

Sb
2sfmrd, s4d

where b=1, 2, or 4 depending on whether the pure se-
quences belong to GOE, GUE, or GSE, respectively,fm is
the average fractional density of themth sequence, andSb

2srd
is the number variance for the pure sequence. A similar ex-
pression is proposed by Seligman and Verbaarschot[20] for
the spectral rigidityD3,
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D3bsr, f1,…, fMd = o
m=1

M

D3bsfmrd. s5d

Frenchet al. [4] considered the gradual symmetry breaking
by the influence of a perturbation represented by a random
matrix with elementsHij . They calculated the two-level cor-
relation function using the perturbation theory. They ex-
pressed the level-number variance as

Sb
2sr,Ld = Sb

2srd +
M − 1

bp2 lnF1 +
p2r2

4stb + p2Ld2G , s6d

where tb is a cutoff parameter andL is the mean-square
value of the perturbation measured in units of the mean level
spacingD,

L = Hij
2/D2 = «2v2/D2. s7d

The cutoff parameter is estimated by the requirement that,
when L=0, Sb

2sr ,0d=Sb
2sr , f1,… , fMd as given by Eq.(4).

Imposing this requirement means thetb depends on the en-
ergy intervalr. In previous application of this approach, e.g.,
in [6,9,10], an average over the range ofr covered by the
data is taken. We suggest here, instead, to determine the cut-
off parameter by requiring the equality of Eqs.(4) and(6) at
a large value ofr, such thatr @1/minsfmd. For this purpose,
we use the asymptotic expression for the number variance,
which is given by

Sb
2srd ,

2

bp2lns2pr + cb + g + 1d, s8d

whereg>0.5772 is Euler’s constant andcb=−p2/8, 0, and
ln 2+p2/8 for GOE, GUE, and GSE, respectively. Combin-
ing Eqs.(4), (6), and(8), we obtain

tb = CMe−scb+g+1d, s9d

where CM = 1
4spm=1

M fmd1/s1−Md. The preexponential factor be-
comesCM = 1

4M1/s1−1/Md in the case when all the initial se-
quences have the same level densityfm=1/M. In particular,
if M =2, thentb=0.709, 0.207, and 0.082 for GOE, GUE,
and GSE, respectively. In the case of two and eight GOE
sequences of equal initial level density, Leitner[6] finds t1
=0.70 and 1.85, which are in good agreement with our result
since Eq.(9) yields t1=0.709 and 1.609 forM =2 and 8.

We now assume that the symmetry-breaking transition
proceeds in such a way that one sequence, say withm= I,
grows at the expense of the others. Then,Sb

2sr ,Ld will again
be expressed as a sum of contributions of them sequences,

Sb
2sr,Ld = o

m=1

M

Sb
2ffmsLdrg, s10d

where fmsLd is the average fractional density of themth
sequences in the presence of perturbation. We further as-
sume, for a perturbation strength measured byL, the frac-
tional level density of the sequences withmÞ I decay with
the same rate, so that

fmsLd = fme−jbsLd, s11d

wherejsLd is a monotonously increasing function ofL. The
condition thatom=1

M fmsLd=1 yields

f IsLd = 1 − s1 − f Ide−jbsLd. s12d

We can estimate the functionjbsLd again by comparing
Eqs. (4) and (6) in the asymptotic region of larger. In the
case when all the initial sequences have equal level densities,
fm=1/M, this comparison yields

jbsLd = pÎ 2L

Mtb

, s13d

which agrees with the estimate in Eq.(3), when A
=pv /DÎtb. This finding shows the consistency of the argu-
ment leading to the model under consideration with the re-
sults of the perturbation theory concerning symmetry break-
ing. It also allows us to express the fractional level densities
during the symmetry-breaking transition,fmsLd, to the
strength of the symmetry-breaking interaction(7).

IV. CALCULATION OF NNS DISTRIBUTION

The NNS distribution of a spectrum resulting from a ran-
dom superposition ofM independent sequences is well
known [1], as mentioned above. Letpjssd denote the NNS
distribution for the j th subsequence. We now assume that
each of the distributionspjssd is that of a GOE. The gener-
alization to other symmetry classes is straightforward. To an
excellent approximation, thepjssd’s are then given by the
Wigner surmise. We define the associated gap functions
Ejssd=es

`ds8es8
` pjsxddx for the subsequences and the gap

functionEssd=es
`ds8es8

` psxddx for sequenceS. Mehta[1] has
shown thatEssd=p j=1

M Ejsf jsd. The NNS distribution for the
composite spectrum is obtained by differentiatingEssd twice.
When the symmetry has two eigenvalues, the spectrum is
that of a superposition of two independent GOE level se-
quences of fractional densitiesf1 and f2=1−f1. The corre-
sponding NNS distribution is given by

Pss, f1d =
p

2
f1
3se−pf1

2s2/4erfcFÎp

2
s1 − f1dsG

+
p

2
s1 − f1d3se−ps1 − f1d2s2/4FerfcSÎp

2
f1sDG2

+ 2f1s1 − f1de−ps2f1
2−2f1+1ds2/4. s14d

The expression for the spacing distribution becomes more
complicated whenM .2. We can obtain an approximate ex-
pression for the NNS distribution, valid for arbitraryM, that
depends on a single parameter. This is the mean fractional
level density f =oi=1

M fi
2 for the superimposed subsequence,

where f j are the fractional densities of the constituting ones.
Some steps in this direction have already been previously
taken[10,12,21,22].

The model proposed above, which represents the spec-
trum of a system with partial symmetry as a superposition of
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independent sequences, suggests applying Eq.(14) for the
transition from the two-GOE statistics to that of a single
GOE. The fractional densityf1 of the decaying sequence will
then play the role of a tuning parameter. A weak point of the
distribution in Eq.(14) is that it differs from zero ats=0,
because the symmetry—breaking interaction lifts the degen-
eracies. The model thus fails in the domain of small spacings
as far as the NNS distributions are concerned. The magnitude
of this domain depends on the ratio of the strength of the
symmetry—breaking interaction to the mean level spacing.
However, this defect does not affect the long-range statistics
(e.g.,S2 or D3).

Equations(11) and (13) provide a relation between the
fractional density of the decaying sequence and the
symmetry—breaking strength. We now test this relation.
Leitner [6] numerically diagonalized sets of real-symmetric
matrices of the form in Eq.(1), where the matricesH1,H2
are independent GOE matrices of equal dimension andV
contains interrelated Gaussian random variables. Each set
corresponds to a different value of strength parameter« [or
L, given by Eq.(7)] and consists of about 2000 matrices of
dimension 400. The NNS distribution obtained by Leitner for
four values ofL=4.05310−4,8.11310−3,4.05310−2, and
8.11310−1 is shown as histograms in Fig. 1. The figure com-
pares these statistically significant numerical results with the
prediction of Eq.(14), with f1 calculated by inserting these
values ofL into Eqs.(11) and(13). We see that the proposed
model presents a satisfactory agreement with the numerical
results while using the same values for the parameterL. The
only disagreement is between the calculated and measured
values ofPssd at small values ofs, as we have already ex-
pected. The symmetry breaking decreases the probability of
finding degenerate levels sharply, leading to the observed dip

at smalls in the spacing distributions of the numerical ex-
periment. This dip is followed by an overshoot to restore
normalization. The width of this dip, which is a measure of
level splitting responsible for degeneracy removal, increases
with increasing the parameterL, as expected. In spite of this,
we shall find in the next section that the parameters obtained
in the comparison of the NNS distribution(14) with experi-
ment can successfully be used in the analysis of other statis-
tics such as rigidityD3 for the same spectra.

V. COMPARISON WITH EXPERIMENT

Andersenet al. [13] measured the frequency spectrum
and the widths for acoustic resonances in thin aluminum
plates, cut in the shape of a three-leaf clover with outer and
inner radii 80 mm and 70 mm, respectively. This shape is
chosen because a similar billiard has a chaotic classical dy-
namics[23]. Due to the mirror symmetry through the middle
plane of the plate, each resonance of the plate belongs to one
of two mode classes. The flexural modes, which have dis-
placement mainly normal to the plane of the plate, are anti-
symmetric with respect to reflection through the middle of
the plane. The in-plane modes are symmetric. The authors
separated the modes according to their measured widths and
showed that each mode class obeyed the GOE statistics. The
number of observed modes in each class was nearly the
same. They introduced a gradual breaking of the mirror sym-
metry by cutting a slit of increasing depth on one face of the
plate. They were able to describe the transition that takes
place as the mode classes mixed in terms of a random matrix
model.

This section demonstrates that the resonances for the
three-leaf clover plate can approximately be described as two
uncoupled classes even if the symmetry is partially broken.
Figure 2 shows by histograms the experimental width distri-
bution for the resonances when the plate is intact, and when
three different symmetry-breaking splits are cut out. The first
case is naturally described as an independent superposition

FIG. 1. NNS distributions during the 2GOE-GOE crossover
transition. The histograms represent the numerical results of Leit-
ner’s [6] diagonalization of ensembles of two-block diagonal matri-
ces, each of which is a GOE, perturbed by random real matrices
with strength parametersL=4.05310−4, 8.11310−3, 4.05310−2,
and 8.11310−1. The smooth curves are for the prediction of the
proposed independent-sequence model for symmetry breaking. The
tuning parameterf1 is calculated by using Eqs.(11) and (13) with
the corresponding values of interaction strengthL.

FIG. 2. Resonance-width distributions for the acoustic reso-
nances in intact and cut three-leaf clover-shaped plates, measured
by Andersonet al. [13], fitted by a sum of two Gaussian functions.
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of contributions from the in-plane and flexural modes. The
authors of[13] assume that the width distribution in this case
is given by a linear superposition of two Gaussian distribu-
tions of the same weight, i.e.,

PsGd = CgsGI
0,sI

0d + s1 − CdgsGF
0,sF

0d, s15d

wheregsG ,sd is a Gaussian distribution with mean valueG
and variances2, and the suffixesI andF are for the in-plane
and flexural modes, respectively. The statistical weights of
both classes are set equal, i.e.,C= 1

2. They analyzed the
width spectrum of the distorted plates using a random matrix
model that describes the coupling of the two mode classes.
Figure 2 analyzes the width distribution for both the intact
and distorted plates by the sum of two Gaussians in Eq.(15).
The statistical weights, mean widths, and variances for each
mode are determined by ax2 fit. The figure shows that the
overlap of the width distributions of the two classes indeed
increases with symmetry violation. However, the resolution
of the two modes by means of Eq.(15) is possible even in
the case where the symmetry is almost completely destroyed.
Interestingly, the statistical weights of the two modes in all

cases remain the same, equal to1
2, within the statistical error.

Figure 3 compares the resonance spacing distributions
measured in[13] with the prediction of Eq.(14). The frac-
tional density of the decreasing sequencef1 is set equal to
0.5 in the case of an impact plate, where the symmetry is
conserved, and considered as a fitting parameter in the cases
of deformed plates. The best-fit values are
0.221±0.008, 0.085±0.004, and 0.047±0.002. The agree-
ment with the experiment is good. An exception is the do-
main of small spacings(the first bin), where the model pre-
dicts nonvanishing distribution ats=0.

Figure 4 compares the experimental values of theD3 sta-
tistic for the same four cases considered in Fig. 3 with the
ones calculated for a corresponding superposition of two se-
quences. The fractional densities of the sequences used in the
calculations are the best-fit values obtained for the NNS dis-
tributions. The agreement between the theoretical curves and
experimental histograms is good. This good agreement
means that the evaluation of the fractional densities of the
sequences constituting the spectrum using Eq.(14) for the
NNS distribution is accurate despite the wrong behavior of
this distribution at small spacings.

VI. CONCLUSION

We propose a model for the spectral fluctuations of sys-
tems with partially conserved symmetry. When the symmetry
is exact, the spectrum is composed of a superposition of
independent level sequences, each corresponding to a fixed
value of the symmetry quantum number. We argue that the
same representation may still be valid when the symmetry is
violated. The symmetry-breaking transition is modeled by
assuming that one of the sequences is growing at the expense
of the others. A relation between the fractional level densities
of the intermediate sequences and the symmetry-breaking

TABLE I. Parameters used in the comparison of the width dis-
tribution with a superpesiton of two Gaussian functions, shown in
Fig. 2.

Intact plate Cut 37.4 mg Cut 71.3 mg Cut 128.8 mg

C 0.5 0.47±0.05 0.50±0.05 0.47±0.04

GI 12.6±0.3 14.2±0.6 17.6±0.7 20.7±0.5

sI 2.8±0.3 3.8±0.6 5.0±0.7 5.1±0.5

GF 44.1±0.5 48.1±0.8 42.0±1.2 40.1±0.7

sF 3.8±0.4 5.3±0.7 7.6±1.2 7.2±0.7

FIG. 3. NNS distributions for the acoustic resonances in intact
and cut three-leaf clover-shaped plates measured by Anderson
et al. [13]. The curves are the results ofx2 fits by Eq. (14) for a
spectrum composed of two independent GOE sequences.

FIG. 4. Spectral rigidityD3 for the acoustic resonances in intact
and cut three-leaf clover-shaped plates measured by Anderson
et al. [13]. The curves are calculated for a superposition of two
independent GOE sequences with the same fractional densities that
fit the corresponding NNS distribution in Fig. 3.
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interaction strength is obtained by comparing the asymptotic
behavior of the level-number variance for the sequence su-
perposition with the previous results obtained by applying
the perturbation theory. The model is tested by comparing its
prediction with the results of numerical diagonalization of a
Hamiltonian divided into a symmetry-conserving term and a
perturbation and the outcome of an acoustic resonance ex-
periment. It is found to give an accurate representation for
the spectra except in the domain of small spacing, where the
symmetry-breaking interaction removes all possible acciden-
tal degeneracies.

The proposed model is not meant to replace more sophis-
ticated models that describe the breaking of known symme-
tries, such as isospin or parity. However, it is useful in cases
when an approximate symmetry is unknown or ignored. It
has recently been successfully applied to study the NNS dis-
tribution of low-lying 2+ states of even-even nuclei. Rela-
tively small values for the mean fractional level densities of
the superimposed sequences are obtained for nuclei expected
to have one of the dynamical symmetries of the interacting
boson model, indicating that their spectra may be divided
into two or more nearly independent sequences.
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