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Phenomenological model for symmetry breaking in a chaotic system
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We assume that the energy spectrum of a chaotic system undergoing symmetry-breaking transitions can be
represented as a superposition of independent level sequences, one increasing at the expense of the others. The
relation between the fractional level densities of the sequences and the symmetry-breaking interaction is
deduced by comparing the asymptotic expression of the level-number variance with the corresponding expres-
sion obtained using the perturbation theory. This relation is supported by a comparison with previous numerical
calculations. The predictions of the model for the nearest-neighbor-spacing distribution and the spectral rigidity
are in agreement with the results of an acoustic resonance experiment.
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I. INTRODUCTION ing M. Numerical investigations for breaking such symme-

Random matrix theory provides a framework for describ-{ries require diagonalizing larger matrices, which are built of
ing the statistical properties of spectra for quantum Systemgizaue blocks, in order to achieve a statistical significance
whose classical counterpart is chaotic2]. It models the comparable to that of modern experiments. Additionally, the
Hamiltonian of a chaotic system by an ensemble ofnumber of allowable symmetry eigenvalues is not always
N-dimensional random matrices, subject to some generdixed, as in the case of multiple collective excitation of nu-
symmetry constraints. Time-reversal-invariant quantum syselei. For example, the maximum number of phonons realized
tem having integral spins are represented by a Gaussian dr the nuclear vibrational model is subject to disp[i&].
thogonal ensembléGOE) of random matrices while those In the present paper, we consider a simple model for
having half-integral spins are modeled by a Gaussian symgradual symmetry breaking in a chaotic system. This model
plectic ensemble(GSE). Chaotic systems without time- represents the energy spectrum as independent level se-
reversal invariance are represented by the Gaussian unitagpiences not only in the absence of the symmetry breaking
ensemblg GUE). Symmetries associated with quantum num-perturbation, but also during the whole transition until the
bers always involve a structure of the Hamiltonian matricessymmetry is totally violated. During the crossover from full
which is reflected in the composition of the energy spectrato no symmetry, one of the sequences grows at the expense
When the system has such a symmetry witreigenvalues, of the other sequences until it totally exhausts the spectrum.
the Hamiltonian of the system is block diagonal. Each blockThe proposed model leads to approximate expressions for
represents an eigenvalya a set of eigenvalugsf the sym-  the nearest-neighbor and next-to-nearest-neighbor spacing
metry operator, and may be considered as a member of ortbstributions [10] which depend on a single parameter,
of the above-mentioned canonical ensembles. The energyamely the mean level density of the sequences. These have
spectrum is given by a superpositidf of independent se- been successfully applied to the analysis of the spectra of
quences, each one representing one of the Hamiltoniacoupled microwave resonatof8], which are not described
blocks. Modifications accounting for the symmetry breakingby a Hamiltonian divided into a symmetry-breaking term and
are realized by introducing coupling blocks belonging to dif-a perturbation. The model provides a satisfactory description
ferent quantum numbers. The first attempt in this direction ifor level statistics of low-lying 2 states of even-even nuclei
due to Rosenzweig and Portg8]. Their model was ex- [12] without explicit knowledge of their symmetry proper-
panded by Frenclet al. [4], who applied the perturbation ties. This paper presents additional arguments in favor of that
theory to study transitions between different classes of symmodel. Section Il shows that the energy spectrum obtained in
metry. Guhr and Weidenmillef5] applied this model to the Rosenzweig-Porter mod@] may approximately be rep-
study mixing of states with isospifi=0, 1 in nuclei. Leitner resented as a composite spectrum of level sequences. Section
et al. [6,7] obtained closed-form expressions for the nearestHl uses the asymptotic values for the expressions of level-
neighbor-spacindNNS) distributions within its framework number variance obtained by Frenehal. [4] for systems
by applying the perturbation theory. Their results have beemindergoing a symmetry breaking to find a relation between
applied to experimental spectra for two coupled microwavehe fractional level density of the sequences and the
billiards [8] by Barbosa and Harnd@]. One, however, may symmetry-breaking perturbation strength. This relation is
have difficulties with this model when the number of thetested in Sec. IV by a comparison of the NNS distributions of
symmetry eigenvalued! is more than two. More informa- the composite spectrum with the ones obtained by Lejtler
tion has to be put in the theory since the influence of symthrough a diagonalization of the Rosenzweig-Porter Hamil-
metry breaking on different eigenfunctions may be different.tonian. Section V shows that the model under investigation is
Moreover, one may have difficulties in applying Leitner’s consistent with the results of the acoustic-resonance experi-
perturbation formulas for symmetries with larg&, which  ment by Andersert al. [13]. The conclusion and summary
are valid for energy intervals of length considerably exceedeof this work are given in Sec. VI.
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IIl. AMODEL FOR SYMMETRY BREAKING Hy O
: (2)
o

H= ,

The purpose of this section is to show that the level spec- 0 H;
trum of a chaotic system with a conserved symmetry can still
be expressed as a superposition of independent sequencki§re, the diagonal blockd; , are nearly equal to the diag-
even when the symmetry is partially violated. For concreteonal blocksH; , of the unperturbed Hamiltonian, except for a
ness, we restrict consideration in this section to the transitioghift in the diagonal matrix elements by almost the same
from two independent GOE spectra to a single GOE specamount in each block, but in opposite directions. This shift
trum. The extension to other universality classes is trivialWill produce a corresponding shift in the eigenvalues corre-
We assume that the system is described by the RosenzweigPonding to each block. If the level density of each sequence
Porter model[3]. The Hamiltonian of the perturbed system in the absence of perturbationdéE), then after perturbation,
can be written as a sum of a block-diagonal matrix, reprethe level densities of the sequences becgitietas), re-
senting the case when the symmetry is conserved, and a papectively, where is a constant. Now, ip(E) is approxi-
turbation responsible for symmetry breaking. When the symmated by an exponential function as in many applications,
metry has two eigenvalues of equal degeneracy, thtéhen the fractional density of the sequence that decreases by

Hamiltonian takes the form the influence of perturbation, say the sequence labeled by 1,
can be approximately related to the perturbation paranaeter
by

H_(Hl o>+ (o v) "
"o H/) WV o) fi=f1 ™, (3)

wheref, 4 is the initial fractional density and is a constant.
The spectrum of the chaotic system under consideration

can approximately be represented by a superposition of two

independent sequences all the way through the symmetry-

breaking transition, even in the case whén= H, in Eq. (1).

Y alysis of the spacing distribution of coupled resonators of

equal size has shown tHiB0]. The purpose of the follow-

g sections is to provide further support for this approxima-

ion.

We note that the proposed representation of symmetry

eaking is meant for chaotic systems. It does not apply, for

whereH; andH, are GOE matrices with elements having a
varianceuz(1+6ij), andV is a random matrix with elements
having the same variance so tleat1 cause#d as a whole to
be a GOE matrix.

Because the system is chaotic, the eigenvalues of the sy
metry are expected to spread out over phase space. Thus,
of the matrix elements that couple different eigenstates arg,
statistically equivalent. Keeping this in mind, we consider
simple version of the Rosenzweig-Porter model in which
H,=H,, hoping that the obtained results approximately applybr

for independent diagonal Hamiltonian blocks. We start Withexample, to the experiment by Ellegaatal. [14], where a

the case in which th_e SYm”?e”y is fully conserv(edzO).. gradual breaking of a point-group symmetry in monocrystal-
The total wave function is given by a product of an eigen-jine quartz blocks is achieved by cutting small pieces at one
function of the symmetry operator and an eigenfunction thah¢ i angles. The properties of quartz allowed these authors
depends on all coordinates except the one that represents the - sider the pure sequences as pseudointegrable systems
symmetry. For concreteness, we shall refer to these as tr@ee, e.g., Refg15-17). A previous analysig18] of this
spatial coordinates, although other variables may be méxperiment has shown that the symmetry breaking can be

volved. In the case under consideration, the symmetry OPergsplained by introducing a new GOE level sequence in ad-
tor Shas two eigenvalues, sayands,. It can be represented iion 1 the original pseudointegrable ones, and allowing it
by the 2x2 matrix, diads;,s,), with corresponding eigen- to grow at their expense.

vectorsa; and a,. Wave functions of a chaotic system have

nearly a uniform phase-space distribution. Almost nothing

happens to the spatial components of the wave functions lll. CALCULATION OF LEVEL-NUMBER VARIANCE

upon introducing the symmetry-breaking perturbation. In this ]

case, the effect of symmetry breaking can approximately be The level number variance for a spectrum composed of a
taken into account by simply introducing a new symmetrysuperposition oM independent sequences is given[tg]
operatorS; that contains additional nondiagonal elements,

each equal ta, which is proportional te. The wave func- M

tion of each perturbed state is given by a spatial wave func- SA ) = 2 S5(FD, (4)

tion that does not depend on the symmetry breaking, multi- m=1

plied by one of the two eigenfunctions,; , of S; having

eigenvalues.; ,=3[s,+5,£/(s,-5,)?+48°]. Thus, while the  where =1, 2, or 4 depending on whether the pure se-
perturbed Hamiltonian(1) has nonvanishing off-diagonal quences belong to GOE, GUE, or GSE, respectivglyis
blocks in the representation in which the symmetry wavethe average fractional density of theh sequence, anﬁg(r)
functions area; ,, it will recover the block-diagonal form is the number variance for the pure sequence. A similar ex-
when using the representation that involves the eigenvectogsression is proposed by Seligman and Verbaarsi&@itfor
B120f Ss the spectral rigidityA,,
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fn(A) = froe786), (11)

where&(A) is a monotonously increasing function &f The
_ ~condition that=M_,f (A)=1 yields

Frenchet al. [4] considered the gradual symmetry breaking

by the influence of a perturbation represented by a random fi(A)=1-(1-f)e . (12)
matrix with elementsH;;. They calculated the two-level cor-
relation function using the perturbation theory. They ex-
pressed the level-number variance as

M
Agg(r,fy, ..., fu) = > Agp(fur) . (5
m=1

We can estimate the functiofy(A) again by comparing
Egs. (4) and (6) in the asymptotic region of large In the
case when all the initial sequences have equal level densities,
22 } © fm=1/M, this comparison yields

, (6

B + A )2 2A
” E(N) =7\~ (13

where 75 is a cutoff parameter and is the mean-square B

value of the perturbation measured in units of the mean levelhich agrees with the estimate in Eq3), when A

spacingD, =mv/Dy7s. This finding shows the consistency of the argu-
A = H2/D2 = 6202/D2 2 ment leading to the model under consideration with the re-

-l =8 . () sults of the perturbation theory concerning symmetry break-

The cutoff parameter is estimated by the requirement thafnd- It also allows us to express the fractional level densities

WhenA:O,Eé(r,O):Eé(r,fl,...,fM) as given by Eq(4). dturmgthth? thsymmetry:[bretz)ikmg trgnfltlorim(A), to the

Imposing this requirement means thgdepends on the en- ST€NJN OF he Symmetry-breaking interac ah.

ergy intervalr. In previous application of this approach, e.g.,

in [6,9,1Q, an average over the range oftovered by the

data is taken. We suggest here, instead, to determine the cut- V. CALCULATION OF NNS DISTRIBUTION

off parameter by requiring the equality of Eqé) and(6) at The NNS distribution of a spectrum resulting from a ran-

a large value of, such that > 1/min(f,,). For this purpose, yom superposition ofM independent sequences is well
we use the asymptotic expression for the number variancgnown [1], as mentioned above. Lgi(s) denote the NNS

S5 A) =35 + M= 1In[l t

which is given by distribution for thejth subsequence. We now assume that
5 each of the distributiong(s) is that of a GOE. The gener-
Ez(r) ~—In(2ar +cz+ y+1) (8)  alization to other symmetry classes is straightforward. To an
2 B ’ . . ; .
B excellent approximation, the;(s)’s are then given by the

where y=0.5772 is Euler's constant angj=—72/8, 0, and W|gn_ermsurnl|se. We define the associated gap functions
In 2+72/8 for GOE, GUE, and GSE, respectively. Combin- Ei(S)=/sdS /¢ Pj(X)dx for the subsequences and the gap

ing Egs.(4), (6), and(8), we obtain function E(s)=f;°ds’f;°,p(x)dxf0r sequencé&. Mehta[1] has
shown thatE(s)=Hj""=1Ej(fjs). The NNS distribution for the
75 = Cye @Y, (99 composite spectrum is obtained by differentiati(g) twice.

Ry U(1-M) , When the symmetry has two eigenvalues, the spectrum is
where CM‘fi(Hrn:lfm) - The preexponential factor be- ot of 4 superposition of two independent GOE level se-

comesCy =M™ in the case when all the initial se- quences of fractional densitids and f,=1f,. The corre-
quences have the same level densjfy 1/M. In particular,  sponding NNS distribution is given by

if M=2, then7,=0.709, 0.207, and 0.082 for GOE, GUE,
and GSE, respectively. In the case of two and eight GOE
sequences of equal initial level density, Leitri6f finds 7,
=0.70 and 1.85, which are in good agreement with our result — )
since Eq.(9) yields 7,=0.709 and 1.609 foM=2 and 8. o T (1 — 1L 17 erfc( N S)

We now assume that the symmetry-breaking transition 2 1 2 1t
proceeds in such a way that one sequence, say mvith, ) 2
grows at the expense of the others. THEfi(r, A) will again +2f;(1 — f)e "2 DS, (14)
be expressed as a sum of contributions of theequences,

P(s,f;) = gffse‘”fisz"‘erfc{ %(1 - fl)s]

The expression for the spacing distribution becomes more

M complicated wheM >2. We can obtain an approximate ex-

2 - 2 pression for the NNS distribution, valid for arbitrak, that

Eﬁ(r’A) mE_lEB[fm(A)r], (10 depends on a single parameter. This is the mean fractional

level densityf=3M {2 for the superimposed subsequence,

where f.(A) is the average fractional density of tmth  wheref; are the fractional densities of the constituting ones.
sequences in the presence of perturbation. We further aSome steps in this direction have already been previously

sume, for a perturbation strength measuredAhythe frac- taken[10,12,21,22

tional level density of the sequences with# | decay with The model proposed above, which represents the spec-
the same rate, so that trum of a system with partial symmetry as a superposition of
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FIG. 1. NNS distributions during the 2GOE-GOE crossover FIG. _2._ Resonance-width distributions for the acoustic reso-
transition. The histograms represent the numerical results of Leit?@nces in intact and cut three-leaf clover-shaped plates, measured
ner's[6] diagonalization of ensembles of two-block diagonal matri- °Y Andersoret al. [13), fitted by a sum of two Gaussian functions.
ces, each of which is a GOE, perturbed by random real matrices
with strength parameterd=4.05x 1074, 8.11x 1073, 4.05x 102,  at smalls in the spacing distributions of the numerical ex-
and 8.11x 101 The smooth curves are for the prediction of the periment. This dip is followed by an overshoot to restore
proposed independent-sequence model for symmetry breaking. Thgormalization. The width of this dip, which is a measure of
tuning parametef, is calculated by using Eqs¢ll) and(13) with  |evel splitting responsible for degeneracy removal, increases
the corresponding values of interaction strength with increasing the parametdr, as expected. In spite of this,

) . we shall find in the next section that the parameters obtained
independent sequences, suggests applying(E4.for the i, the comparison of the NNS distributiai4) with experi-

transition from the two-GOE statistics to that of a single nent can successfully be used in the analysis of other statis-
GOE. The fractional dens@l of the decaying sequence will' tics such as rigidity\ for the same spectra.
then play the role of a tuning parameter. A weak point of the
distribution in Eq.(14) is that it differs from zero as=0,
because the symmetry—breaking interaction lifts the degen-
eracies. The model thus fails in the domain of small spacings
as far as the NNS distributions are concerned. The magnitude Andersenet al. [13] measured the frequency spectrum
of this domain depends on the ratio of the strength of theand the widths for acoustic resonances in thin aluminum
symmetry—breaking interaction to the mean level spacingplates, cut in the shape of a three-leaf clover with outer and
However, this defect does not affect the long-range statisticgner radii 80 mm and 70 mm, respectively. This shape is
(e.g.,2? or Ay). chosen because a similar billiard has a chaotic classical dy-
Equations(11) and (13) provide a relation between the namics[23]. Due to the mirror symmetry through the middle
fractional density of the decaying sequence and thelane of the plate, each resonance of the plate belongs to one
symmetry—breaking strength. We now test this relation.of two mode classes. The flexural modes, which have dis-
Leitner [6] numerically diagonalized sets of real-symmetric placement mainly normal to the plane of the plate, are anti-
matrices of the form in Eq(1), where the matricel;,H, = symmetric with respect to reflection through the middle of
are independent GOE matrices of equal dimension ¥nd the plane. The in-plane modes are symmetric. The authors
contains interrelated Gaussian random variables. Each seeparated the modes according to their measured widths and
corresponds to a different value of strength parametgr ~ showed that each mode class obeyed the GOE statistics. The
A, given by Eq.(7)] and consists of about 2000 matrices of number of observed modes in each class was nearly the
dimension 400. The NNS distribution obtained by Leitner forsame. They introduced a gradual breaking of the mirror sym-
four values ofA=4.05x 1074,8.11x 10°3,4.05x 102, and  metry by cutting a slit of increasing depth on one face of the
8.11x 101 is shown as histograms in Fig. 1. The figure com-plate. They were able to describe the transition that takes
pares these statistically significant numerical results with theplace as the mode classes mixed in terms of a random matrix
prediction of Eq.(14), with f; calculated by inserting these model.
values ofA into Eqgs.(11) and(13). We see that the proposed ~ This section demonstrates that the resonances for the
model presents a satisfactory agreement with the numeric#éiiree-leaf clover plate can approximately be described as two
results while using the same values for the paramg&tdthe  uncoupled classes even if the symmetry is partially broken.
only disagreement is between the calculated and measurddgure 2 shows by histograms the experimental width distri-
values ofP(s) at small values o, as we have already ex- bution for the resonances when the plate is intact, and when
pected. The symmetry breaking decreases the probability dhree different symmetry-breaking splits are cut out. The first
finding degenerate levels sharply, leading to the observed dipase is naturally described as an independent superposition

V. COMPARISON WITH EXPERIMENT
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TABLE |. Parameters used in the comparison of the width dis-
tribution with a superpesiton of two Gaussian functions, shown in %[ intact piate ., ] cwsramg
Fig. 2. f,=0.50 . f,=022 .
04t e
Intact plate Cut37.4mg Cut71.3mg Cut128.8 mg o o
C 0.5 0.47+0.05 0.50+0.05 0.47+0.04
I 12.6+0.3 14.2+0.6 17.6+0.7 20.7+£0.5 oo
g 2.8+0.3 3.8+0.6 5.0+0.7 5.1+0.5 ‘”06_ I
: Cut 71.3mg Cut 128.8 mg
I'e 44.1+0.5 48.1+0.8 42.0£1.2 40.1+£0.7 f,=0.085 1 f=0047
oF 3.8+0.4 5.3+0.7 7.6+1.2 7.2+0.7 04l ot |
. . i 0.2}
of contributions from the in-plane and flexural modes. The .
authors off13] assume that the width distribution in this case ~_ \* | L
is given by a linear superposition of two Gaussian distribu- 0 5 10 15 200123abcABC 6pt. 5 2 25 30

tions of the same weight, i.e.,
FIG. 4. Spectral rigidityA; for the acoustic resonances in intact
and cut three-leaf clover-shaped plates measured by Anderson
P() = Cg(F?,a?) +(1 —C)g(FO,(rg), (15) et al. [13]. The curves are calc_ulated for a supe_rposition of two
independent GOE sequences with the same fractional densities that
fit the corresponding NNS distribution in Fig. 3.

whereg(I', o) is a Gaussian distribution with mean vallie

and variancer?, and the suffixes andF are for the in-plane  cases remain the same, equa%t(within the statistical error.
and flexural modes, respectively. The statistical weights of Figure 3 compares the resonance spacing distributions
both classes are set equal, i.é:,:%. They analyzed the measured irf13] with the prediction of Eq(14). The frac-
width spectrum of the distorted plates using a random matrixional density of the decreasing sequerigés set equal to
model that describes the coupling of the two mode classe$.5 in the case of an impact plate, where the symmetry is
Figure 2 analyzes the width distribution for both the intactconserved, and considered as a fitting parameter in the cases
and distorted plates by the sum of two Gaussians inEs. of deformed plates. The bestfit values are
The statistical weights, mean widths, and variances for eacf.221+0.008, 0.085+0.004, and 0.047+0.002. The agree-
mode are determined by & fit. The figure shows that the ment with the experiment is good. An exception is the do-
overlap of the width distributions of the two classes indeedmain of small spacingghe first bir), where the model pre-
increases with symmetry violation. However, the resolutiondicts nonvanishing distribution &t=0.

of the two modes by means of E(L5) is possible even in Figure 4 compares the experimental values ofAhesta-

the case where the symmetry is almost completely destroyetistic for the same four cases considered in Fig. 3 with the
Interestingly, the statistical weights of the two modes in allones calculated for a corresponding superposition of two se-
quences. The fractional densities of the sequences used in the
calculations are the best-fit values obtained for the NNS dis-
Cut37.4mg ] tributions. The agreement between the theoretical curves and
f,=0.22120008 experimental histograms is good. This good agreement
means that the evaluation of the fractional densities of the
sequences constituting the spectrum using #4) for the
NNS distribution is accurate despite the wrong behavior of
this distribution at small spacings.

0.8

0.6

0.4

0.2

£o.0 + ¥
0.8¢ Cut71.3mg . Cut 128.8 mg 1
f,= 0.085:0.004 f,=0.047:0.002 VI. CONCLUSION

0.6

We propose a model for the spectral fluctuations of sys-
tems with partially conserved symmetry. When the symmetry
is exact, the spectrum is composed of a superposition of

independent level sequences, each corresponding to a fixed
005 i 2 3 0 i 2 3 2 value of the symmetry quantum number. We argue that the
y same representation may still be valid when the symmetry is

FIG. 3. NNS distributions for the acoustic resonances in intactviolated. The symmetry-breaking transition is modeled by
and cut three-leaf clover-shaped plates measured by Andersdissuming that one of the sequences is growing at the expense
et al. [13]. The curves are the results gf fits by Eq.(14) for a  of the others. A relation between the fractional level densities
spectrum composed of two independent GOE sequences. of the intermediate sequences and the symmetry-breaking

0.4}

0.2
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interaction strength is obtained by comparing the asymptotic The proposed model is not meant to replace more sophis-
behavior of the level-number variance for the sequence suicated models that describe the breaking of known symme-
perposition with the previous results obtained by applyingtries, such as isospin or parity. However, it is useful in cases
the perturbation theory. The model is tested by comparing itsvhen an approximate symmetry is unknown or ignored. It
prediction with the results of numerical diagonalization of ahas recently been successfully applied to study the NNS dis-
Hamiltonian divided into a symmetry-conserving term and atribution of low-lying 2" states of even-even nuclei. Rela-
perturbation and the outcome of an acoustic resonance exvely small values for the mean fractional level densities of
periment. It is found to give an accurate representation fothe superimposed sequences are obtained for nuclei expected
the spectra except in the domain of small spacing, where thi® have one of the dynamical symmetries of the interacting
symmetry-breaking interaction removes all possible accidenboson model, indicating that their spectra may be divided

tal degeneracies. into two or more nearly independent sequences.
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